4.6 Article

Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 80, Issue 2, Pages 237-241

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-004-2963-9

Keywords

-

Ask authors/readers for more resources

Femtosecond laser (Ti:sapphire, 100 fs pulse duration) ablation of silicon in air was compared with nanosecond laser (Nd:YAG, 3 ns pulse duration) ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-induced plasmas decreased faster than ns-induced plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions were compared.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available