4.7 Article

Hydrogen peroxide-induced cell death in normal human keratinocytes is differentiation dependent

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 38, Issue 3, Pages 307-316

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.freeradbiomed.2004.09.021

Keywords

hydrogen peroxide; apoptosis; human epidermis; keratinocytes; differentiation; ROS; free radicals

Ask authors/readers for more resources

More than other tissues, skin is exposed to numerous external stresses generating ROS that, in addition to endogenous oxygen radicals, cause keratinocyte alterations and contribute in part to photocarcinogenesis and aging. Recent evidence suggests a differentiation-dependent susceptibility of keratinocytes to apoptosis. We explored hydrogen peroxide-induced cell death in normal human keratinocytes according to their differentiation. On H2O2-exposed skin explants, caspase-3 was strongly activated in basal keratinocytes double stained with beta(1) integrin, whereas DNA fragmentation occurred in suprabasal cells only without caspase-3 activation. In addition, isolated basal keratinocytes, selected by adhesion to type IV collagen, were more sensitive than nonadherent cells to H2O2-induced apoptosis with regard to mitochondrial transmembrane potential (Deltapsi(mt)) collapse and membrane integrity. Similarly, necrotic/late apoptotic cells were present at low levels only in the adherent epidermal population. Furthermore, in primary cultures of undifferentiated keratinocytes H2O2-induced cell death appeared via a mitochondrial failure. Deltapsi(mt) collapse was associated with a strong early activation of the initiatory caspase-8, then the executive caspase-3, and, to a lesser extent, the inflammatory caspase-1. Finally, undifferentiated basal cells possess a higher sensitivity than differentiated suprabasal cells to H2O2-induced cell death, and apoptosis in human keratinocytes occurs via different pathways depending on the cell's differentiation state. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available