4.7 Article

The dynamic capability equations: A new tool for analyzing robotic manipulator performance

Journal

IEEE TRANSACTIONS ON ROBOTICS
Volume 21, Issue 1, Pages 115-123

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2004.837243

Keywords

acceleration; dynamic performance; dynamics; end-effector; force; manipulator; robotics

Categories

Ask authors/readers for more resources

Dynamic capability equations (DCE) provide a new description of robot acceleration and force capabilities. These refer to a manipulator's ability to accelerate its end-effector and to apply forces to the environment at the end-effector. The key features in the development of these equations are that they combine the analysis of end-effector accelerations, velocities, and forces, while addressing the difference in units between translational and rotational quantities. The equations describe the magnitudes of translational and rotational acceleration and force guaranteed to be achievable in every direction, from a particular configuration, given the limitations on the manipulator's motor torques. They also describe the effect of velocities on these capabilities contributed by the Coriolis and centrifugal forces, as well as the reduction of actuator torque capacity due to motor speed. This article focuses on nonredundant manipulators with as many actuators as degrees of freedom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available