4.6 Article

Molecular dynamics simulation of thermal conductivity of Cu-Ar nanofluid using EAM potential for Cu-Cu interactions

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 103, Issue 4, Pages 1001-1008

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-011-6379-z

Keywords

-

Funding

  1. US National Science Foundation [CBET-0730143]
  2. Chinese National Natural Science Foundation [50828601, 50876067]

Ask authors/readers for more resources

Mechanism of heat conduction in copper-argon nanofluids is studied by molecular dynamics simulation and the thermal conductivity was obtained using the Green-Kubo method. While the interatomic potential between argon atoms is described using the well-known Lennard-Jones (L-J) potential, a more accurate embedded atom method (EAM) potential is used in describing the interatomic interaction between copper atoms. It is found that the heat current autocorrelation function obtained using L-J potential to describe the copper-copper interatomic interaction fluctuates periodically due to periodic oscillation of the instantaneous microscopic heat fluxes. Thermal conductivities of nanofluids using EAM potentials were calculated with different volume fractions but the same nanoparticle size. The results show that thermal conductivity of nanofluids are almost a linear function of the volume fraction and slightly higher than the results predicted by the conventional effective media theory for a well-dispersed solution. A solid-like base fluid liquid layer with a thickness of 0.6 nm was found in the simulation and this layer is believed to account for the small discrepancy between the results of MD simulation and the conventional effective media theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available