4.6 Article

Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method

Journal

MATHEMATICS AND COMPUTERS IN SIMULATION
Volume 68, Issue 1, Pages 9-21

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matcom.2004.09.004

Keywords

multiple-attribute decision-making; simulation optimization; TOPSIS; integrated circuit packaging; Taguchi method

Ask authors/readers for more resources

The simulation model is a proven tool in solving nonlinear and stochastic problems and allows examination of the likely behavior of a proposed manufacturing system under selected conditions. However, it does not provide a method for optimization. A practical problem often embodies many characteristics of a multiresponse optimization problem. The present paper proposes to solve the multiresponse simulation-optimization problem by a multiple-attribute decision-making method-a technique for order preference by similarity to ideal solution (TOPSIS). The method assumes that the control factors have discrete values and that each control factor has exactly three control levels. Taguchi quality-loss functions are adapted to model the factor mean and variance effects. TOPSIS is then used to find the surrogate objective function for the multiple responses. The present paper predicts the system performances for any combination of levels of the control factors by using the main effects of the control factors according to the principles of a robust design method. The optimal design can then be obtained. A practical case study from an integrated-circuit packaging company illustrates the efficiency and effectiveness of the proposed method. Finally, constraints of the proposed method are addressed. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available