4.6 Article

Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers

Journal

Publisher

SPRINGER
DOI: 10.1007/s00339-011-6732-2

Keywords

-

Funding

  1. SERC Agency of Science, Technology And Research (A*STAR) [092 154 0099]
  2. A*STAR-SINGA

Ask authors/readers for more resources

Arrays of planar symmetric coupled oligomers support higher sensitivity optical response than uncoupled plasmonic systems. In this work, the transition from isolated to collective optical modes in plasmonic oligomers, such as pentamers and quadrumers, is investigated via experimental characterization and simulation with good agreement. The designed and fabricated metallic oligomers consist of a single central disk and outer ring-like disks in nanoscales. It is shown that while the far-field spectral responses of oligomers are polarization-independent, due to the structure symmetry, the spatial localization of near-field energy in nanogaps can be polarization-controlled. This localization is established at a normal-incident light of a single source rather than co-illumination by two light sources accompanied by different incident angles or phase shift. It can overcome the spatial restrictions of conventional optics. The influence of the nano-disk sizes and gaps among them on the intensity and shape of the localized near-field energy in pentamers and quadrumers is also studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available