4.3 Article

The role of DNA polymerase η in UV mutational spectra

Journal

DNA REPAIR
Volume 4, Issue 2, Pages 211-220

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2004.09.006

Keywords

UV mutagenesis; siRNA; DNA polymerase eta; cyclobutane pyrimidine dimer; (6-4) photoproduct

Funding

  1. NIEHS NIH HHS [ES06070] Funding Source: Medline

Ask authors/readers for more resources

UV irradiation generates predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase eta (Pol eta) dependent process. Pol eta is encoded by the POLH (XPV) gene in humans. In order to clarify the specific role of Pol eta in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells. This strategy provides an advantage over studying mutagenesis in cell lines derived from normal individuals and XP-V patients, since the genetic background of the cells is identical. Synthetic RNA duplexes were used to inhibit Pol eta expression in 293T cells. The reduction of Pol eta mRNA and protein was greater than 90%. The supF shuttle vector was irradiated with UVC and replicated in 293T cells in presence of anti-Pol eta siRNA. The supF mutant frequency was increased by up to 3.6-fold in the siRNA knockdown cells relative to control cells confirming that Pol eta plays an important role in mutation avoidance and that the pol eta knockdown was efficient. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Surprisingly, neither the type of mutations nor their distribution along the supF gene were substantially different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. The data are compatible with two models. (i) Incorrect replication of cytosine-containing photoproducts by a polymerase other than Pol eta produces similar mutations as when Pol eta is present but at a higher frequency. (ii) Due to lack of Pol eta or low levels of remaining Pol eta, lesion replication is delayed allowing more time for cytosine deamination within CPDs to occur. We provide proof of principle that siRNA technology can be used to dissect the in vivo roles of lesion bypass DNA polymerases in DNA damage-induced mutagenesis. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available