4.8 Article

Wavelength-dependent electron and energy transfer pathways in a side-to-face ruthenium porphyrin/perylene bisimide assembly

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 5, Pages 1454-1462

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja045379u

Keywords

-

Ask authors/readers for more resources

A new side-to-face supramolecular array of chromophores, where a pyridyl-substituted perylene bisimide dye axially binds to two ruthenium porphyrin fragments, has been prepared by self-assembly. The array is formulated as DPyPBI[Ru(TPP)(CO)](2), where DPyPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide and TPP = 5,10,15,20-tetraphenylporphyrin. The photophysical behavior of DPyPBI[Ru(TPP)(CO)](2) has been studied by fast (nanoseconds) and ultrafast (femtoseconds) time-resolved techniques. The observed behavior sharply changes with excitation wavelength, depending on whether the DPyPBI or Ru(TPP)(CO) units are excited. After DPyPBI excitation, the strong fluorescence typical of this unit is completely quenched, and time-resolved spectroscopy reveals the occurrence of photoinduced electron transfer from the ruthenium porphyrin to the perylene bisimide dye (tau = 5.6 ps) followed by charge recombination (tau = 270 ps). Upon excitation of the Ru(TPP)(CO) fragments, on the other hand, ultrafast (tau < 1 ps) intersystem crossing is followed by triplet energy transfer from the ruthenium porphyrin to the perylene bisimide dye (tau = 720 ps). The perylene-based triplet state decays to the ground state on a longer time scale (tau = 9.8 mus). The photophysics of this supramolecular array provides remarkable examples of (i) wavelength-dependent behavior (a small change in excitation wavelength causes a sharp switch from electron to energy transfer) and (ii) intramolecular sensitization (the triplet state of the perylene bisimide, inaccessible in the free dye, is efficiently populated in the array).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available