4.5 Article

Formation of spanning water networks on protein surfaces via 2D percolation transition

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 5, Pages 1988-1998

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp045903j

Keywords

-

Ask authors/readers for more resources

The formation of spanning hydrogen-bonded water networks on protein surfaces by a percolation transition is closely connected with the onset of their biological activity. To analyze the structure of the hydration water at this important threshold, we performed the first computer simulation study of the percolation transition of water in a model protein powder and on the surface of a single protein molecule. The formation of an infinite water network in the protein powder occurs as a 2D percolation transition at a critical hydration level, which is close to the values observed experimentally. The formation of a spanning 2D water network on a single rigid protein molecule can be described by adapting the cluster analysis of conventional percolation studies to the characterization of the connectivity of the hydration water on the surface of finite objects. Strong fluctuations of the surface water network are observed close to the percolation threshold. Our simulations also furnish a microscopic picture for understanding the specific values of the experimentally observed hydration levels, where different steps of increasing mobility in the hydrated powder are observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available