4.8 Article

Translational repression of C-elegans p53 by GLD-1 regulates DNA damage-induced apoptosis

Journal

CELL
Volume 120, Issue 3, Pages 357-368

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2004.12.009

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM063310, R01 GM63310] Funding Source: Medline

Ask authors/readers for more resources

p53 is a tumor suppressor gene whose regulation is crucial to maintaining genome stability and for the apoptotic elimination of abnormal, potentially cancer-predisposing cells. C. elegans contains a primordial p53 gene, cep-1, that acts as a transcription factor necessary for DNA damage-induced apoptosis. In a genetic screen for negative regulators of CEP-1, we identified a mutation in GLD-1, a translational repressor implicated in multiple C. elegans germ cell fate decisions and related to mammalian Quaking proteins. CEP-1-dependent transcription of proapoptotic genes is upregulated in the gld-1(op236) mutant and an elevation of p53-mediated germ cell apoptosis in response to DNA damage is observed. Further, we demonstrate that GLD-1 mediates its repressive effect by directly binding to the 3'UTR of cep-1/p53 mRNA and repressing its translation. This study reveals that the regulation of cep-1/p53 translation influences DNA damage-induced apoptosis and demonstrates the physiological importance of this mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available