4.6 Article

The hyperglycemia-induced inflammatory response in adipocytes - The role of reactive oxygen species

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 6, Pages 4617-4626

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M411863200

Keywords

-

Funding

  1. NHLBI NIH HHS [R01-HL-073163-01] Funding Source: Medline
  2. NIA NIH HHS [P01-AG021654] Funding Source: Medline
  3. NIDDK NIH HHS [DK61228, R01 DK050610, 1R01-DK55758] Funding Source: Medline
  4. NIGMS NIH HHS [T32-GM07288] Funding Source: Medline

Ask authors/readers for more resources

Hyperglycemia is a major independent risk factor for diabetic macrovascular disease. The consequences of exposure of endothelial cells to hyperglycemia are well established. However, little is known about how adipocytes respond to both acute as well as chronic exposure to physiological levels of hyperglycemia. Here, we analyze adipocytes exposed to hyperglycemia both in vitro as well as in vivo. Comparing cells differentiated at 4 mm to cells differentiated at 25 mm glucose (the standard differentiation protocol) reveals severe insulin resistance in cells exposed to 25 mm glucose. A global assessment of transcriptional changes shows an up-regulafion of a number of mitochondrial proteins. Exposure to hyperglycemia is associated with a significant induction of reactive oxygen species (ROS), both in vitro as well as in vivo in adipocytes isolated from streptozotocin-treated hyperglycemic mice. Furthermore, hyperglycemia for a few hours in a clamped setting will trigger the induction of a pro-inflammatory response in adipose tissue from rats that can effectively be reduced by co-infusion of N-acetylcysteine (NAC). ROS levels in 3T3-L1 adipocytes can be reduced significantly with pharmacological agents that lower the mitochondrial membrane potential, or by overexpression of uncoupling protein 1 or superoxide dismutase. In parallel with ROS, interleukin-6 secretion from adipocytes is significantly reduced. On the other hand, treatments that lead to a hyperpolarization of the mitochondrial membrane, such as overexpression of the mitochondrial dicarboxylate carrier result in increased ROS formation and decreased insulin sensitivity, even under normoglycemic conditions. Combined, these results highlight the importance ROS production in adipocytes and the associated insulin resistance and inflammatory response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available