4.6 Article

Near-critical nanosecond laser-induced phase explosion on graphite surface

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 102, Issue 2, Pages 493-499

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-010-5954-z

Keywords

-

Funding

  1. Russian Foundation for Basic Research [08-08-00756a, 10-08-00941a]

Ask authors/readers for more resources

Optical reflectivity, removal rate and ablative recoil pressure magnitudes were measured as a function of laser fluence during high-power UV nanosecond laser ablation of graphite. At low fluences only melting and weak surface vaporization of molten carbon were observed. At moderate fluences there is a very narrow fluence interval where the reflected fluence starts to saturate, while the removal rate and ablative recoil pressure rise drastically in a correlated manner, indicating the onset of a near-critical surface phase explosion. Then, at higher fluences the reflected fluence, removal rate and recoil pressure saturate with an appearance of a luminous plume, altogether indicating negligible specular reflectance and absorbance on the target surface due to its complete screening by the highly-absorbing laser plume. The overall strong correlation between the removal rate and recoil pressure magnitudes may indicate rather quasi-continuous removal of the near-critical superheated molten carbon layer by a propagating unloading wave in the absence of a crucial sub-surface temperature maximum in the layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available