4.6 Article

High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer

Journal

APPLIED PHYSICS LETTERS
Volume 86, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1866638

Keywords

-

Ask authors/readers for more resources

We have fabricated light-emitting diodes with a transparent doping layer on silicon nanocrystals (nc-Si) embeded in silicon nitride matrix formed by plasma-enhanced chemical vapor deposition. Under forward biased condition, orange electroluminescence (EL) with its peak wavelength at about 600 nm was observed at room temperature. The peak position of the EL is very similar to that of the photoluminescence (PL) and the emitted EL intensity is proportional to the current density passing through the device. We suggest that the observed EL is originated from electron-hole pair recombination in nc-Si. By using indium tin oxide and n-type SiC layer combination as a transparent doping layer, we obtained high external quantum efficiency greater than 1.6%. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available