4.6 Article

Robustness and network evolution - an entropic principle

Journal

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
Volume 346, Issue 3-4, Pages 682-696

Publisher

ELSEVIER
DOI: 10.1016/j.physa.2004.07.011

Keywords

network evolution; robustness; evolutionary principle

Ask authors/readers for more resources

This article introduces the concept of network entropy as a characteristic measure of network topology. We provide computational and analytical support for the hypothesis that network entropy is a quantitative measure of robustness. We formulate an evolutionary model based on entropy as a selective criterion and show that (a) it predicts the direction of changes in network structure over evolutionary time and (b) it accounts for the high degree of robustness and the heterogenous connectivity distribution, which is often observed in biological and technological networks. Our model is based on Darwinian principles of evolution and preferentially selects networks according to a global fitness criterion, rather than local preferences in classical models of network growth. We predict that the evolutionarily stable states of evolved networks will be characterized by extremal values of network entropy. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available