4.7 Article

Changes in tetrahydrobiopterin levels in endothelial cells and adult cardiomyocytes induced by LPS and hydrogen peroxide -: A role for GFRP?

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 38, Issue 4, Pages 481-491

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2004.11.004

Keywords

biopterin; GTP cyclohydrolase I feedback protein; oxidative stress; glutathione; free radicals

Funding

  1. NHLBI NIH HHS [HL-67244] Funding Source: Medline

Ask authors/readers for more resources

Alterations in tetrahydrobiopterin (BH4) levels have significant consequences in vascular pathophysiology. However, the mechanisms regulating BH4 remain poorly understood. The activity of GTP cyclohydrolase I (GTPCH-I), the first enzyme in BH4 biosynthesis, is controlled by protein levels, posttranslational modifications and interaction with GTPCH-I feedback regulatory protein (GFRP). This work examined the correlation between GTPCH-I protein levels and activity and changes in BH4 ill human endothelial cells (HAECs) and adult rat cardiomyocytes (ARCM). Changes in BH4 were stimulated with LPS in HAECs and ARCM, and with hydrogen peroxide in HAECs only. Biopterin production by HAECs and ARCM were attained with concentrations of LPS much greater than1 mug/ml and responses were nonlinear with respect to LPS concentrations. Western blot analysis demonstrated that induction of biopterin synthesis in HAECs and ARCM by LPS does not entail augmentation of constitutive GTPCH-I protein levels. However, LPS diminished GFRP mRNA, Suggesting that disruption of GTPCH-I:GFRP complex enhances de novo biopterin synthesis. Conversely, treatment with hydrogen peroxide increased GTPCH-I and GFRP mRNA levels in HAECs while depleting BH4 and GSH, which was Counteracted by catalase. This indicates that GFRP may override increases in GTPCH-I protein inhibiting enzyme activity. This conclusion is further supported by depletion of biopterin in cells transiently transfected with GFRP. Thus, allosteric regulation of GTPCH-I activity in the cardiovascular system maybe ail important mechanism regulating BH4 levels through GFRP signaling. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available