4.8 Article Proceedings Paper

Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking

Journal

BIOSENSORS & BIOELECTRONICS
Volume 20, Issue 8, Pages 1573-1579

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2004.08.007

Keywords

bioelectronic sniffer; alcohol sensor; acetaldehyde sensor; breath analysis; ALDH2

Ask authors/readers for more resources

Two kinds of bioelectronic gas sensors (bio-sniffer) incorporating alcohol oxidase (AOD) and aldehyde dehydrogenase (ALDH) were developed for the convenient analysis of ethanol and acetaldehyde in expired gas, respectively. The sniffer devices for gaseous ethanol and acetaldehyde were constructed by immobilizing enzyme on electrodes covered with filter paper and hydrophilic PTFE membrane, respectively. The AOD and ALDH sniffers were used in the gas phase to measure ethanol vapor from 1.0 to 500 ppm, and acetaldehyde from 0.11 to 10 ppm covering the concentration range encountered in breath after alcohol consumption. Both bio-sniffers displayed good gas selectivity which was attributed to the substrate specificity of the relevant enzymes (AOD and ALDH) as gas recognition material. From the results of physiological application, the bio-sniffers could monitor the concentration changes in breath ethanol and acetaldehyde after drinking. The ethanol and acetaldehyde concentrations in expired air from ALDH2 [-] (aldehyde dehydrogenase type 2 negative) subjects were higher than that of the ALDH2 [+] (positive) subjects. The results indicated that the lower activity of ALDH2 induced an adverse effect on ethanol metabolism, leading to ethanol and acetaldehyde remaining in the human body, even human expired air. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available