4.5 Article

Simulated silica

Publisher

ROYAL SOC
DOI: 10.1098/rsta.2004.1506

Keywords

silica; computer simulations; energy landscape; liquid-liquid transitions

Ask authors/readers for more resources

We review how molecular dynamics computer simulations are providing a comprehensive picture of the behaviour of silica, as modelled by the van Beest-Kramer-van Santen (BKS) potential. We have recently evaluated a number of key properties of this model system: the phase diagram, including melting lilies of three crystal phases; the equation of state and free energy of the liquid phase; the dynamical equation of state; the average energy of inherent structures, and configurational entropy, associated with the potential energy landscape of the liquid; and a characterization of the local coordination environments in the supercooled liquid. The results reveal the interplay among a number of phenomena, in particular, the relationship between the energy landscape and the fragile-to-strong crossover of the liquid dynamics; and the relation of both of these to the possibility of a liquid-liquid phase transition in the supercooled liquid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available