4.5 Article

Kinetics of liquid phase photocatalyzed reactions: An illuminating approach

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 6, Pages 2439-2444

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp040236f

Keywords

-

Ask authors/readers for more resources

Analysis of photocatalyst kinetics to date have relied largely on Langmuir-Hinshelwood rate forms, which assume equilibrated adsorption of reactants and, correspondingly, a slow, rate-controlling surface step. Alternatively, and more generally, a pseudo-steady state analysis based upon the stationary state hypothesis for reaction intermediates may be applied. We show here that only this second approach is consistent with the reported intensity dependence of apparent adsorption (and desorption) binding constants, as well as the catalytic rate constant. In consequence, we show that for at least some photocatalyzed reactions, adsorption/desorption reaction equilibria are not established during reaction, because the substantial reactivity of an adsorbed active species (e.g., hole (h+), radical (*OH), etc.) causes a continued displacement from equilibrium of the adsorbed reactant concentration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available