4.7 Article

Identification of pregnane X receptor binding sites in the regulatory regions of genes involved in bile acid homeostasis

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 346, Issue 2, Pages 505-519

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.12.003

Keywords

gene regulation; nuclear receptor; PXR; response element; in silico screening

Ask authors/readers for more resources

The nuclear receptor pregnane X receptor (PXR) acts as a sensor for a broad variety of natural and synthetic lipophilic compounds, such as bile acids and rifampicin, and regulates the expression of proteins that are involved in the metabolism and transport of these compounds. PXR binds as a heterodimer with the retinoid X receptor (RXR) to specific DNA sites, called response elements (REs), within the promoter regions of genes it activates transcriptionally. In this study we created a position weight matrix (PWM) for PXR-RXR heterodimers that took the relative in vitro binding strength and not only the sequence of natural and synthetic PXR binding sites (PXREs) into account. We further extended the discriminatory power of the matrix by including the variation of the dinucleotides 5'-flanking the hexameric binding motifs, which we show to have a significant effect on PXR binding ability. To test this PWM, it was used to screen the promoter regions of the human organic anion transport protein 2 (OATP2) and small heterodimer partner I (SHP1) genes. This resulted in the identification of 17 potential PXREs, of which seven bound PXR-RXR heterodimers in vitro. Furthermore, in HepG2 human hepatoma cells, PXR and RXR occupied chromatin regions that contained four of these REs. Induction of OATP2 and SHP1 mRNA expression by rifampicin confirmed that both genes are primary human PXR responding genes. This observation increases the understanding of the physiological role of PXR in the homeostasis of bile acids in humans. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available