4.6 Article

Nicotinic acid adenine dinucleotide phosphate potentiates neurite outgrowth

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 7, Pages 5646-5650

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M408746200

Keywords

-

Funding

  1. NINDS NIH HHS [NS 18170] Funding Source: Medline

Ask authors/readers for more resources

Ca2+ regulates a spectrum of cellular processes including many aspects of neuronal function. Ca2+-sensitive events such as neurite extension and axonal guidance are driven by Ca2+ signals that are precisely organized in both time and space. These complex cues result from both Ca2+ influx across the plasma membrane and the mobilization of intracellular Ca2+ stores. In the present study, using rat cortical neurons, we have examined the effects of the novel intracellular Ca2+- mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) on neurite length and cytosolic Ca2+ levels. We show that NAADP potentiates neurite extension in response to serum and nerve growth factor and stimulates increases in cytosolic Ca2+ from bafilomycin-sensitive Ca2+ stores. Simultaneous blockade of inositol trisphosphate and ryanodine receptors abolished the effects of NAADP on neurite length and reduced the magnitude of NAADP-mediated Ca2+ signals. This is the first report demonstrating functional NAADP receptors in a mammalian neuron. Interplay between NAADP receptors and more established intracellular Ca2+ channels may therefore play important signaling roles in the nervous system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available