4.6 Article

Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 7, Pages 5724-5732

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M410973200

Keywords

-

Ask authors/readers for more resources

Methylglyoxal is a potent glycating agent under physiological conditions. Human serum albumin is modified by methylglyoxal in vivo. The glycation adducts formed and structural and functional changes induced by methylglyoxal modification have not been fully disclosed. Methylglyoxal reacted with human serum albumin under physiological conditions to form mainly the hydroimidazolone N-delta-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (92% of total modification) with a minor formation of argpyrimidine, N-is an element of-(1-carboxyethyl)lysine, and methylglyoxal lysine dimer. When human serum albumin was modified minimally with methylglyoxal, tryptic peptide mapping indicated a hotspot of modification at Arg-410 located in drug-binding site II and the active site of albumin-associated esterase activity. Modification of Arg-410 by methylglyoxal was found in albumin glycated in vivo. Other sites of minor modification were: Arg-114, Arg-186, Arg-218, and Arg-428. Hydroimidazolone formation at Arg-410 inhibited ketoprofen binding and esterase activity; correspondingly, glycation in the presence of ketoprofen inhibited Arg-410 modification and loss of esterase activity. The pH dependence of esterase activity indicated a catalytic group with pK(a) = 7.9 +/- 0.1, assigned to the catalytic base Tyr-411 with the conjugate base stabilized by interaction with the guanidinium group of Arg-410. Modification by methylglyoxal destabilized Tyr-411 and increased the pK, to 8.8 +/- 0.1. Molecular dynamics and modeling studies indicated that hydroimidazolone formation caused structural distortion leading to disruption of arginine-directed hydrogen bonding and loss of electrostatic interactions. Methylglyoxal modification of critical arginine residues, therefore, whether experimental or physiological, is expected to disrupt protein-ligand interactions and inactivate enzyme activity by hydroimidazolone formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available