4.8 Article

Excitatory cortical neurons form fine-scale functional networks

Journal

NATURE
Volume 433, Issue 7028, Pages 868-873

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature03252

Keywords

-

Funding

  1. NIMH NIH HHS [R01 MH063912] Funding Source: Medline

Ask authors/readers for more resources

The specificity of cortical neuron connections creates columns of functionally similar neurons spanning from the pia to the white matter(1-6). Here we investigate whether there is an additional, finer level of specificity that creates subnetworks of excitatory neurons within functional columns. We tested for fine-scale specificity of connections to cortical layer 2/3 pyramidal neurons in rat visual cortex by using cross-correlation analyses of synaptic currents evoked by photostimulation. Recording simultaneously from adjacent layer 2/3 pyramidal cells, we find that when they are connected to each other (20% of all recorded pairs) they share common input from layer 4 and within layer 2/3. When adjacent layer 2/3 neurons are not connected to each other, they share very little ( if any) common excitatory input from layers 4 and 2/3. In contrast, all layer 2/3 neurons share common excitatory input from layer 5 and inhibitory input from layers 2/3 and 4, regardless of whether they are connected to each other. Thus, excitatory connections from layer 4 to layer 2/3 and within layer 2/3 form fine-scale assemblies of selectively interconnected neurons; inhibitory connections and excitatory connections from layer 5 link neurons across these fine-scale subnetworks. Relatively independent subnetworks of excitatory neurons are therefore embedded within the larger-scale functional architecture; this allows neighbouring neurons to convey information more independently than suggested by previous descriptions of cortical circuitry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available