4.5 Article

Supramolecular assemblies and molecular recognition of amphiphilic Schiff bases with barbituric acid in organized molecular films

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 7, Pages 2532-2539

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp045258g

Keywords

-

Ask authors/readers for more resources

A bolaform Schiff base, N,N-bis(salicylidene)-1,10-decanediamine (BSC10), has been synthesized and its interfacial hydrogen bond formation or molecular recognition with barbituric acid was investigated in comparison with that of a single chain Schiff base, 2-hydroxybenzaldehyde-octadecylamine (HBOA). It has been found that while HBOA formed a monolayer at the air/water interface, the bolaform Schiff base formed a multilayer film with ordered layer structure on water surface. When the Schiff bases were spread on the subphase containing barbituric acid, both of the Schiff bases could form hydrogen bonds with barbituric acid in situ in the spreading films. As a result, an increase of the molecular areas in the isotherms was observed. The in situ H-bonded films could be transferred onto solid substrates, and the transferred multilayer films were characterized by various methods such as UV-vis and FT-IR spectrosopies. Spectral changes were observed for the films deposited from the barbituric acid subphase, which supported the hydrogen bond formation between the Schiff bases and barbituric acid. By measuring the MS-TOF of the deposited films dissolved in CHCl3 solution, it was concluded that a 2:1 complex of HBOA with barbituric acid and a 1:2 complex of BSC10 with barbituric acid were formed. On the other hand, when the multilayer films of both Schiff bases were immersed in an aqueous solution of barbituric acid, a similar molecular recognition through the hydrogen bond Occurred. A clear conformational change of the alkyl spacer in the bolaform Schiff base was observed during the complex formation with the barbituric acid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available