4.6 Review

Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria

Journal

MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS
Volume 69, Issue 1, Pages 155-+

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MMBR.69.1.155-194.2005

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [GM42893, R01 GM042893] Funding Source: Medline

Ask authors/readers for more resources

Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available