4.3 Article

Southern Ocean deep-sea isopod species richness (Crustacea, Malacostraca):: influences of depth, latitude and longitude

Journal

POLAR BIOLOGY
Volume 28, Issue 4, Pages 284-289

Publisher

SPRINGER
DOI: 10.1007/s00300-004-0688-z

Keywords

-

Ask authors/readers for more resources

We examined deep-sea epibenthic sledge isopod data from the Atlantic sector of the Southern Ocean (SO) (depth range=742-5,191 m). Samples were taken during the expeditions EASIZ II (ANT XV-3) in 1998 and ANDEEP I and II (ANT XIX3/4) in 2002. A total of 471 isopod species were recorded from 28 sites. The species richness of the epibenthic sledge samples was highly variable (6-82 species). Species richness was highest at site 131-3 in 3,053 m depth in the north-eastern Weddell Sea. The highest numbers of species were sampled in the middle depth range and lower species richness was found in the shallower and deeper parts of the study area. Depth is suggested to explain isopod species richness better than both latitude and longitude. Between 58 degrees S and 65 degrees S, the number of species ranged from 9 to 82 (mean=35.9). Further south in the Weddell Sea, between 73 degrees S and 74 degrees S, species richness was lower and the number of species ranged from 6 to 35 (mean=19.2). With regard to longitude, the highest species richness (up to 82 species) was found between 50 degrees W and 60 degrees W in the area of the South Shetland Islands and around the Antarctic Peninsula, while numbers did not exceed 50 species in the eastern Weddell Sea. The haul length, ranging from 807 to 6,464 m, was positively correlated with depth; however, there was no linear relationship between haul length and species richness. We therefore suggest that depth was the most important factor explaining isopod species richness. However, only 28 sites were visited and the statistical power is thus limited. Sampling in the deep sea is expensive and time consuming and as yet this is the best isopod data set available from the Atlantic sector of the SO. Future expeditions are therefore important to better explain the current patterns of benthic diversity in Antarctica.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available