4.5 Article Proceedings Paper

Molecular mechanism of nitric oxide-induced osteoblast apoptosis

Journal

JOURNAL OF ORTHOPAEDIC RESEARCH
Volume 23, Issue 2, Pages 462-468

Publisher

WILEY
DOI: 10.1016/j.orthres.2004.08.011

Keywords

osteoblasts; nitric oxide; apoptosis; mitochondrial functions; reactive oxygen species; Bcl-2 protein

Categories

Ask authors/readers for more resources

Nitric oxide (NO) can regulate osteoblast activities. Our previous study showed that NO induced osteoblast apoptosis [Chen RM, Liu HC, Lin YL, Jean WC, Chen JS, Wang JH. Nitric oxide induces osteoblast apoptosis through the de novo synthesis of Bax protein. J Orthop Res 2002;20:295-302]. This study was further aimed to evaluate the mechanism of NO-induced osteoblast apoptosis from the viewpoints of mitochondrial functions, intracellular oxidative stress, and the anti-apoptotic Bcl-2 protein using neonatal rat calvarial osteoblasts as the experimental model. Exposure of osteoblasts to sodium nitroprusside (SNP), an NO donor, significantly increased amounts of lactate dehydrogenase in the culture medium, and decreased cell viability in concentration- and time-dependent manners. Administration of SNP in osteoblasts time-dependently led to DNA fragmentation. The mitochondrial membrane potential was significantly reduced following SNP administration. SNP decreased complex I NADH dehydrogenase activity in a time-dependent manner. Levels of cellular adenosine triphosphate (ATP) were suppressed by SNP. In parallel with the mitochondrial dysfunction, SNP time-dependently increased levels of intracellular reactive oxygen species. Immunoblotting analysis revealed that SNP reduced Bcl-2 protein levels. Exposure to lipopolysaccharide (LPS) and IFN-gamma significant increased endogenous nitrite production. In parallel with the increase in endogenous NO, administration of LPS and IFN-gamma suppressed cell viability, mitochondrial membrane potential, and ATP synthesis. Results of this study show that NO released from SNP can induce osteoblast insults and apoptosis, and the mechanism may involve the modulation of mitochondrial functions, intracellular reactive oxygen species, and Bcl-2 protein. (c) 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available