4.7 Article

Caveolin-1 expression is essential for proper nonshivering thermogenesis in brown adipose tissue

Journal

DIABETES
Volume 54, Issue 3, Pages 679-686

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.54.3.679

Keywords

-

Funding

  1. NIDDK NIH HHS [R01-DK55758] Funding Source: Medline
  2. NIGMS NIH HHS [T32-GM07288] Funding Source: Medline

Ask authors/readers for more resources

Recently, we have shown that loss of caveolin-1 leads to marked alterations in insulin signaling and lipolysis in white adipose tissue. However, little is known about the role of caveolin-1 in brown adipose tissue (BAT), a tissue responsible for nonshivering thermogenesis. Here, we show that caveolin-1 null mice have a mildly, yet significantly, decreased resting core body temperature. To investigate this in detail, we next subjected the mice to fasting (for 24 h) or cold treatment (4degreesC for 24 h), individually or in combination. Interestingly, caveolin-1 null mice showed markedly decreased body temperatures in response to fasting or fasting/cold treatment; however, cold treatment alone had no effect. In addition, under these conditions caveolin-1 null mice failed to show the normal increase in serum nonesterifled fatty acids induced by fasting or fasting/cold treatment, suggesting that these mice are unable to liberate triglyceride stores for heat production. In accordance with these results, the triglyceride content of BAT was reduced nearly 10-fold in wild-type mice after fasting/ cold treatment, but it was reduced only 3-fold in caveolin-1 null mice. Finally, electron microscopy of adipose tissue revealed dramatic perturbations in the mitochondria of caveolin-1 null interscapular brown adipocytes. Taken together, our data provide the first molecular genetic evidence that caveolin-1 plays a critical functional and structural role in the modulation of thermogenesis via an effect on lipid mobilization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available