4.5 Review

The role of electron capture dissociation in biomolecular analysis

Journal

MASS SPECTROMETRY REVIEWS
Volume 24, Issue 2, Pages 201-222

Publisher

WILEY
DOI: 10.1002/mas.20014

Keywords

electron capture dissociation; ECD; FTICR; FTICR; FT-MS; proteomics; post-translational modifications

Categories

Ask authors/readers for more resources

The introduction of electron capture dissociation (ECD) to electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) constitutes a significant advance in the structural analysis of biomolecules. The fundamental features and benefits of ECD are discussed in this review. ECD is currently unique to FT-ICR MS and the fundamentals of that technique are outlined. The advantages and complementarity of ECD in relation to other tandem mass spectrometry (MS/MS) techniques, such as infrared multiphoton dissociation (IRMPD) and sustained off-resonance collision-induced dissociation (SORI-CID), are discussed. The instrumental considerations associated with implementation of ECD, including activated ion techniques and coupling to on-line separation techniques, are covered, as are the allied processes electronic excitation dissociation (EED), electron detachment dissociation (EDD), and hot electron capture (HECD). A major theme of this review is the role of ECD in proteomics, particularly for characterization of post-translational modifications (phosphorylation, glycosylation, carboxyglutamic acid, sulfation, acylation, and methionine oxidation) and the top-down approach to protein identification. The application of ECD to the analysis of polymers, peptide nucleic acids, and oligonucleotides is also discussed. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available