4.2 Article

Finite-volume approach to thermoviscoelasticity

Journal

NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS
Volume 47, Issue 3, Pages 213-237

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10407790590901675

Keywords

-

Ask authors/readers for more resources

This article presents a development of the finite-volume method for solving linear thermoviscoelastic deformation problems. Hereditary continuum problems represented by spatially elliptic second-order partial differential equations with memory are considered. This is motivated by the need to develop numerical algorithms for the solution of thermoviscoelastic stress analysis problems, although it is expected that results presented will generalize to other Volterra problems. Assuming that the hydrostatic and deviatoric responses are uncoupled, and using the temperature-time equivalence hypothesis, the constitutive equations are expressed in an incremental form. Procedures for analyzing linear viscoelastic deformation are described, and numerical examples are given to demonstrate the effectiveness of the model and the numerical algorithms. The accuracy of the method is demonstrated through comparison with analytical and experimental results as well as with numerical solutions obtained elsewhere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available