4.7 Article

Probabilistic approaches to scheduling reserve selection

Journal

BIOLOGICAL CONSERVATION
Volume 122, Issue 2, Pages 253-262

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biocon.2004.07.015

Keywords

algorithm; complementarity; dynamic; reserve selection; scheduling; uncertainty

Ask authors/readers for more resources

Most existing reserve selection algorithms are static in that they assume that a reserve network is designed and patches are selected by decision-makers at a single point in time. In reality, however, selection processes are often dynamic and patches are selected one by one or in several groups because for example there are insufficient funds at the beginning of the process to put all the patches under protection. Finding an optimal dynamic selection strategy is tricky since due to the complementarity principle the value of a particular patch depends on the presence of other patches in the network - including those that have not yet been selected. As unprotected patches may be lost, e.g., through development, the long-term value of selecting a particular patch is uncertain. Existing dynamic selection algorithms are either 'myopic' and consider only those patches that have already been protected, totally ignoring future uncertainty, or they are based on stochastic dynamic programming, which delivers the optimal strategy taking uncertainty into account but is numerically too complex to be employed in actual selection problems. In this paper, a 'foresighted' selection strategy as well as a number of variants are developed using probability theory. The different strategies are compared for a large number of selection problems. All variants outperform the myopic strategy and perform close to the optimal strategy. However, the performances of all strategies, including the optimal and the myopic one, are not dramatic. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available