4.7 Article

The effect of competitive antagonist chain length on NMDA receptor subunit selectivity

Journal

NEUROPHARMACOLOGY
Volume 48, Issue 3, Pages 354-359

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2004.11.004

Keywords

NMDA; glutamate; Xenopus oocyles; NR2; antagonist; CPP

Funding

  1. NIMH NIH HHS [R01 MH060252-04, R01 MH060252-01A1, MH60252, R01 MH060252-02, R01 MH060252, R01 MH060252-03] Funding Source: Medline

Ask authors/readers for more resources

The widely-used N-methyl-D-aspartate (NMDA) receptor antagonists (R)-4-(3-phosphonopropyl) piperazine-2-carboxylic acid ((R)-CPP) and (R)-2-amino-7-phosphonoheptanoate ((R)-AP7) are frequently used as general NMDA receptor antagonists and assumed not to display significant selectivity among NMDA receptor NR2 subunits. However, electrophysiotogical studies have suggested that certain longer chain N-methyl-D-aspartate (NMDA) receptor competitive antagonists, such as (R)-CPP are ineffective at subpopulations of NMDA receptors in the red nucleus, superior colliculus, and hippocainpus. Using recombinant receptors expressed in Xenopus oocytes, we have examined the effect of antagonist chain length on NR2 subunit selectivity. All antagonists displayed the potency order (high to low affinity) of NR2A > NR2B > NR2C > NR2D, however the longer chain antagonists (having 7 instead of 5 bond lengths between acidic groups) displayed much greater subunit selectivity than their short-chain homologues. For example (R)-CPP displayed a 50-fold difference in affinity between NR2A-containing and NR2D-containing NMDA receptors, while the shorter chain hornologue 4-(phosphonomethyl) piperazine-2-carboxylic acid (PMPA) displayed only a 5-fold variation in affinity. These results can account for the earlier physiological findings and suggest that longer chain antagonists such as (R)-CPP and (R)-AP7 should not be used as general NMDA receptor antagonists. (c) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available