4.3 Article

Strategy for chromosomal gene targeting in RecA-deficient Escherichia coli strains

Journal

BIOTECHNIQUES
Volume 38, Issue 3, Pages 405-408

Publisher

BIOTECHNIQUES OFFICE
DOI: 10.2144/05383ST03

Keywords

-

Ask authors/readers for more resources

Reengineering DNA by homologous recombination in Escherichia coli often depends oil helper functions provided oil a temporarily introduced replicon that is subsequently cured from the cells. The suicide vector pKSS offers a new curing strategy. pKSS specifies a variant of phenylalanyl-transfer RNA (tRNA) synthetase conferring relaxed substrate specificity towards phenylalanine analogs that results in their lethal incorporation into cellular proteins. Consequently, the presence of p-chlorophenylalanine selects for strains that have lost pKSS. This principle, in conjunction with a plasmid-borne recA gene, was exploited for targeted chromosomal mutagenesis by double homologous recombination in RecA-negative E. coli strains. Gene replacement with a kanamycin-resistance cassette was possible in a single step by plating on kanamycin and p-chlorophenylalanine agar plates and incubating at 37 degrees C. The presence of the correct chromosomal mutation and the absence of the plasmid were established by several control experiments. A simple screen confirmed the desired resistance phenotype in. 44% of the initially selected clones, and 75% of these had the correct genotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available