4.4 Article

On stability prediction for low radial immersion milling

Journal

MACHINING SCIENCE AND TECHNOLOGY
Volume 9, Issue 1, Pages 117-130

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1081/MST-200051378

Keywords

end milling; stability prediction

Ask authors/readers for more resources

Stability boundaries for milling are predicted by the zeroth-order approximation (ZOA) and the semi-discretization (SD) methods. For high radial immersions, the methods predict similar stability boundaries. As radial immersion is decreased, the disagreement between the predictions of the two methods grows considerably. The most prominent difference is an additional type of instability predicted only by the SD method. The experiments confirm the predictions of the SD method. Three different types of tool motion are observed: periodic chatter-free, quasiperiodic chatter, and periodic chatter motion. Tool displacements recorded during each of the three motion types are analyzed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available