4.7 Article

Survival, regeneration and functional recovery of motoneurons after delayed reimplantation of avulsed spinal root in adult rat

Journal

EXPERIMENTAL NEUROLOGY
Volume 192, Issue 1, Pages 89-99

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2004.10.019

Keywords

spinal motoneurons; root avulsion; ventral root reimplantation; regeneration; reinnervation; functional recovery; adult rat

Categories

Ask authors/readers for more resources

We have established that extensive reinnervation and functional recovery follow immediate reimplantation of avulsed ventral roots in adult rats. In the present study, we examined the consequences of reimplantation delayed for 2 weeks after avulsion of the C6 spinal root. Twelve and 20 weeks after delayed reimplantation, 57% and 53% of the motoneurons in the injured spinal segment survived. More than 80% of surviving motoneurons regenerated axons into the reimplanted spinal root. Cholinesterase-silver staining revealed axon terminals on endplates in the denervated muscles. The biceps muscles in reimplanted animals had atrophied less than those in animals with avulsion only, as indicated by muscle wet weight and histological appearance. After electrical stimulation of the motor cortex or the C6 spinal root, typical EMG signals were recorded in biceps of reimplanted animals. The latency of the muscle potential at 20 weeks was similar to that of sham-operated controls. Behavioral recovery was demonstrated by a grooming test and ipsilateral forepaw movements were well coordinated in both voluntary and automatic activities. These results demonstrate that ventral root reimplantation can protect severed motoneurons, enable the severed motoneurons to regenerate axons, and enhance the recovery of forelimb function even when it is delayed for 2 weeks after avulsion. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available