4.7 Article

The interaction of strain of Holstein-Friesian cows and pasture-based feed systems on milk yield, body weight, and body condition score

Journal

JOURNAL OF DAIRY SCIENCE
Volume 88, Issue 3, Pages 1231-1243

Publisher

AMER DAIRY SCIENCE ASSOC
DOI: 10.3168/jds.S0022-0302(05)72790-9

Keywords

Holstein-Friesian strain; grass-based feed system

Ask authors/readers for more resources

Interactions between genotype and environment are becoming increasingly important as cattle genotypes are being managed in a diverse range of environments worldwide. The objective of this study was to investigate, if there is an interaction of strain of Holstein-Friesian cows (HF) by grass-based feed system that affects milk production, body weight, and body condition score. Three strains of HF were compared on 3 pasture-based feed systems over 3 consecutive years. The 3 strains of HF were: high production North American, high durability North American, and New Zealand. The 3 grass-based feeding systems (FS) were: a high grass allowance system (MPFS), a high concentrate system (HCFS), and a high stocking rate system (HSFS). There was a separate farmlet for each FS and a total of 99, 117, and 117 animals were used in yr 1, 2, and 3 respectively, divided equally between strains of HF and FS. The high production cows produced the highest yield of milk, the New Zealand the lowest, and the high durability animals were intermediate. Milk fat and protein content were higher for the New Zealand strain than for the high production and high durability strains. The New Zealand strain had the lowest body weight and the highest condition score, whereas the high durability strain had the highest body weight, and the high production strain had the lowest condition score. There was a strain x FS interaction for yield of milk, fat, and protein. The milk production response to increased concentrate supplementation (MPFS vs. HCFS) was greater with both the high production and high durability strains (1.10 kg of milk/kg of concentrate for high production; 1.00 kg of milk/kg of concentrate for high durability) than the New Zealand strain (0.55 kg of milk/kg of concentrate). The results indicate that the optimum strain of HF will vary with feed system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available