4.4 Article

A new cell-based assay for measuring the forward mutation rate of HIV-1

Journal

JOURNAL OF VIROLOGICAL METHODS
Volume 124, Issue 1-2, Pages 95-104

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jviromet.2004.11.010

Keywords

HIV-1; retroviridae; mutation rate; variation; reverse transcription; thymidine kinase

Funding

  1. NCI NIH HHS [CA72239] Funding Source: Medline
  2. NIAID NIH HHS [AI057164] Funding Source: Medline

Ask authors/readers for more resources

Over 20 years into the ever-worsening AIDS pandemic, genetic variation remains the greatest obstacle for treating and preventing HIV-1 infection. Mutation rate assays for HIV-1 have been reported; however, none measure directly the forward mutation rate during replication of the virus in cell culture while still retaining the ability to propagate and further study mutant proviruses. Therefore, the objective of the current study was to develop such a phenotypic cell-based assay for measuring the forward mutation rate of HIV-1. Conventional recombinant DNA techniques and polymerase chain reaction were used to create a replication defective HIV-1 vector, pNL4-3Delta+cass, which is based on the NL4-3 strain and contains the thymidine kinase gene from human herpes virus type I as the mutational target. A series of transfection and infection steps were used to introduce the vector into 143B cells, which are negative for thymidine kinase function, and produce vector virus for a single cycle of replication. Viral titers were measured by counting the number of drug resistant colonies on the assay plates, and forward mutation rates were calculated from the viral titers. Mutant proviruses were sequenced to determine the types of genetic alterations that occurred. The average forward mutation rate for HIV-1 was 2.2 x 10(-5) mutations/base/cycle. The majority of mutations were base substitutions, including high frequencies of C --> U and G --> A transitions. Single adenosine insertions were also observed frequently. The new assay is economical and provides a direct measurement of the mutation rate during a single cycle of viral replication. Target cells containing mutant proviruses survive the drug selection process and may be propagated for further analysis. The new assay is novel and has many advantages over previous mutation rate assays and thus will be very useful in future studies on genetic variation of HIV-1. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available