4.5 Article

Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 72A, Issue 3, Pages 258-268

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jbm.a.30219

Keywords

fluorine-substituted hydroxyapatite (FHA); zirconia (ZrO(2)); dense composites; load-bearing implants; mechanical properties; osteoblast-like cell responses

Ask authors/readers for more resources

A fluorine-substituted hydroxyapatite (FHA) and zirconia (ZrO(2)) dense composite (50:50 by volume) was fabricated, and its feasibility for hard tissue applications was investigated in terms of its mechanical properties and osteoblast-like cell (MG63) responses in vitro. The incorporation of fluorine into the hydroxyapatite (HA) structure was highly effective in producing a completely dense apatite-ZrO(2) composite through a pressureless sintering route, by preventing the thermal degradation of the apatite and ZrO(2). The resultant FHA-ZrO(2) dense composite had excellent mechanical properties, such as flexural strength (310 MPa), fracture toughness (3.4 MPam(1/2)), hardness (10 GPa), and elastic modulus (160 GPa). The flexural strength and fracture toughness of the composite showed a noticeable improvement by a factor of similar to4 with respect to the pure apatites (HA and FHA). The MG63 cellular responses to the composite were assessed in terms of the cell proliferation (cell number and [(3)H]-thymidine incorporation) and differentiation (alkaline phosphatase activity, osteocalcin, and collagen production). The cells on the FHA-ZrO(2) composite spread and grew well, and proliferated actively during the culture period. The expression of alkaline phosphatase, osteocalcin, and collagen by the cells on the composite showed a similar trend to that on the pure apatites, although slight downregulations were observed, implying that the FHA-ZrO(2) 50:50 composite retains the osteoblastic functionality and traits of the pure HA ceramics to a high degree. This finding, in conjunction with the considerable improvements in mechanical properties, supports the extended use of this composite for hard tissue applications. (C) 2005 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available