4.4 Article

Hemolysis of erythrocytes and erythrocyte membrane fluidity changes by new lysosomotropic compounds

Journal

JOURNAL OF FLUORESCENCE
Volume 15, Issue 2, Pages 137-141

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10895-005-2521-7

Keywords

hemolytic activity; osmotic resistance; membrane fluidity

Ask authors/readers for more resources

This work contains the results of studies on the influence of newly synthesized lysosomotropic substances (lysosomotropes) on human erythrocytes. Six homologous series of the compounds differing in the alkyl chain length and counterions were studied. They were found to hemolyse erythrocytes and to change their osmotic resistance. The observed hemolytic effects were dependent both on the compounds structure (polar head dimension and alkyl chain length of compound) and its form (the kind of the counterion). In parallel, the influence of lysosomotropes on fluidity of the erythrocyte membrane was studied. Three different fluorescent probes were used; 1,6-diphenyl-1,3,5-hexatriene (DPH), 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, p-toluenesulfonate (TMA-DPH) and 6-dodecanoyl-2-dimethylaminonaphthalene (laurdan). Their anisotropy (DPH and TMA-DPH) or general polarization (laurdan) values after incorporation into ghost erythrocyte membranes were measured. The results obtained show that fluidity changes accompanied the effects observed in hemolytic experiments both quantitatively and qualitatively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available