4.5 Article

Z-scan theory for nonlocal nonlinear media with simultaneous nonlinear refraction and nonlinear absorption

Journal

APPLIED OPTICS
Volume 52, Issue 20, Pages 4843-4848

Publisher

OPTICAL SOC AMER
DOI: 10.1364/AO.52.004843

Keywords

-

Categories

Ask authors/readers for more resources

In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed-and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open-and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions. (C) 2013 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available