4.8 Article

Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for μ-HPLC and capillary electrochromatography

Journal

ANALYTICAL CHEMISTRY
Volume 77, Issue 5, Pages 1398-1406

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac048299h

Keywords

-

Funding

  1. NIGMS NIH HHS [GM 20993] Funding Source: Medline

Ask authors/readers for more resources

Single-wall carbon nanotubes (SWNT) were incorporated into an organic polymer monolith containing vinylbenzyl chloride (VBC)and ethylene dimethacrylate (EDMA) to form a novel monolithic stationary phase for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The retention behavior of neutral compounds on this poly(VBC-EDMA-SWNT) monolith was examined by separating a mixture of small organic molecules using micro-HPLC. The result indicated that incorporation of SANT enhanced chromatographic retention of small neutral molecules in reversed-phase HPLC presumably because of their strongly hydrophobic characteristics. The stationary phase was formed inside a fused-silica capillary whose lumen was coated with covalently bound polyethyleneimine (PEI). The annular electroosmotic flow (EOF) generated by the PEI coating allowed peptide separation by CEC in the counterdirectional mode. Comparison of peptide separations on poly(VBC-EDMA-SWNT) and on poly(VBC-EDMA) with annular EOF generation revealed that the incorporation of SWNT into the monolithic stationary phase improved peak efficiency and influenced chromatographic retention. The structures of pretreated SWNT and poly(VBC-EDMA-SWNT) monolith were examined by high-resolution transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, and multipoint BET nitrogen adsorption/desorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available