4.7 Review

Review of bipolar plates in PEM fuel cells: Flow-field designs

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 30, Issue 4, Pages 359-371

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2004.09.019

Keywords

PEM fuel cell; bipolar plate; flow field; flow channels

Ask authors/readers for more resources

The polymer electrolyte membrane (PEM) fuel cell is a promising candidate as zero-emission power source for transport and stationary cogeneration applications due to its high efficiency, low-temperature operation, high power density, fast start-up, and system robustness. Bipolar plate is a vital component of PEM fuel cells, which supplies fuel and oxidant to reactive sites, removes reaction products, collects produced current and provides mechanical support for the cells in the stack. Bipolar plates constitute more than 60% of the weight and 30% of the total cost in a fuel cell stack. For this reason, the weight, volume and cost of the fuel cell stack can be reduced significantly by improving layout configuration of flow field and use of lightweight materials. Different combinations of materials, flow-field layouts and fabrication techniques have been developed for these plates to achieve aforementioned functions efficiently, with the aim of obtaining high performance and economic advantages. The present paper presents a comprehensive review of the flow-field layouts developed by different companies and research groups and the pros and cons associated with these designs. (C) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available