4.5 Article

Effect of rare earth element addition on the microstructure of Sn-Ag-Cu solder joint

Journal

JOURNAL OF ELECTRONIC MATERIALS
Volume 34, Issue 3, Pages 217-224

Publisher

SPRINGER
DOI: 10.1007/s11664-005-0207-1

Keywords

lead-free solder; Sn-Ag-Cu alloys; rare earth; intermetallic compounds; microstructure

Ask authors/readers for more resources

The effects of minimal rare earth (RE) element additions on the microstructure of Sn-Ag-Cu solder joint, especially the intermetallic compounds (IMCs), were investigated. The range of RE content in Sn-Ag-Cu alloys varied from 0 wt.% to 0.25 wt.%. Experimental results showed that IMCs could be dramatically repressed with the appropriate addition of RE, resulting in a fine microstructure. However, there existed an effective range for the RE addition. The best RE content was found to be 0.1 wt.% in the current study. In addition to the typical morphology of Ag3Sn and Cu6Sn5 IMCs, other types of IMCs that have irregular morphology and uncertain constituents were also observed. The IMCs with large plate shape mainly contained Ag and Sn, but the content of Ag was much lower than that of Ag3Sn. The cross sections Of Cu6Sn5 IMCs whiskers showed various morphologies. Furthermore, some eutectic-like structures, including lamellar-, rod-, and needle-like phases, were observed. The morphology of eutectic-like structure was related to the RE content in solder alloys. When the content of RE is 0.1 wt.%, the needle-like phase was dominant, while the lamellar structure prevailed when the RE content was 0.05 wt.% or 0.25 wt.%. It is suggested that the morphology change of the eutectic-like structure directly affects the creep properties of the solder joint.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available