4.5 Article Proceedings Paper

Application of extended crystal plasticity to the modeling of glide and kink bands and of crack opening in single crystals

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 32, Issue 3-4, Pages 426-434

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2004.09.023

Keywords

thermodynamics; single crystal plasticity; geometrically necessary dislocations; hardening; glide and kink bands; crack-opening displacement

Ask authors/readers for more resources

In this work, the influence of the development of geometrically necessary dislocations (GNDs) at a crack tip in single crystals on the hardening and crack propagation behaviour is investigated. In particular, we are interested in examining the effect of such additional hardening on the development of glide and kink bands at the crack tip as well as on the process of crack opening. To this end, following Nye and many others, local deformation incompatibility in the material is adopted as a measure of the density of GNDs. Their development results in additional energy being stored in the material, leading to additional kinematic-like hardening. A thermodynamic formulation of the model in the context of the dissipation principle facilitates the derivation of the corresponding hardening relation. Results suggest that this additional hardening retards kink-band development, but has little or no influence on glide-band development. It also influences the crack tip opening displacement (CTOD). It turns out that the simulated CTOD correlates well with experimentally determined crack-propagation rates for different crack growth direction in the crystal. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available