4.7 Article

Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets -: art. no. 034106

Journal

PHYSICS OF FLUIDS
Volume 17, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1863285

Keywords

-

Ask authors/readers for more resources

A discussion is presented on the role of limited conductivity and permittivity on the behavior of electrified jets. Under certain conditions, significant departures with respect to the perfect-conductor limit are to be expected. In addition, an exploration is undertaken concerning the validity of one-dimensional average models in the description of charged jets. To that end, a temporal linear modal stability analysis is carried out of poor-conductor viscous liquid jets flowing relatively to a steady radial electric field. Only axisymmetric perturbations, leading to highest quality aerosols, are considered. A grounded coaxial electrode is located at variable distance. Most available studies in the literature are restricted to the perfect-conductor limit, while the present contribution is an extension to moderate and low electrical conductivity and permittivity jets, in an effort to describe a situation increasingly prevalent in the sector of small-scale free-surface flows. The influence of the electrode distance b, a parameter alpha defined as the ratio of the electric relaxation time scale to the capillary time scale, and the relative permittivity beta on the growth rate has been explored yielding results on the stability spectrum. In addition, arbitrary viscosity and electrification parameters are contemplated. In a wide variety of situations, the perfect-conductor limit provides a good approximation; however, the influence of alpha and beta on the growth rate and most unstable wavelength cannot be neglected in the general case. An interfacial boundary layer in the axial velocity profile occurs in the low-viscosity limit, but this boundary layer tends to disappear when alpha or beta are large enough. The use of a one-dimensional (1D) averaged model as an alternative to the 3D approach provides a helpful shortcut and a complementary insight on the nature of the jet's perturbative behavior. Lowest-order 1D approximations (average model), of widespread application in the literature of electrified jets, are shown to be inaccurate in low-viscosity imperfect-conductor jets. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available