4.3 Article

Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 28, Issue 3, Pages 403-416

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2004.10.005

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [NS23583, NS36754] Funding Source: Medline

Ask authors/readers for more resources

During vertebrate neuromuscular junction (NMJ) development, nerve-secreted agrin induces acetylcholine receptor (AChR) clustering in muscle by activating the muscle-specific tyrosine kinase MuSK. Recently, it has been recognized that MuSK activation-dependent AChR clustering occurs in embryonic muscle even in the absence of agrin, but how this process is regulated is poorly understood. We report that inhibition of tyrosine phosphatases in cultured C2 mouse myotubes using pervanadate enhanced MuSK auto-activation and agrin-independent AChR clustering. Moreover, phosphatase inhibition also enlarged the AChR clusters induced by agrin in these cells. Conversely, in situ activation of MuSK in cultured Xenopus embryonic muscle cells, either focally by anti-MuSK antibody-coated beads or globally by agrin, stimulated downstream tyrosine phosphatases, which could be blocked by pervanadate treatment. Immunoscreening identified Shp2 as a major tyrosine phosphatase in C2 myotubes and downregulation of its expression by RNA interference alleviated tyrosine phosphatase suppression of MUSK activation. Significantly, depletion of Shp2 increased both agrin-independent and agrin-dependent AChR clustering in myotubes. Our results suggest that muscle tyrosine phosphatases tightly regulate MuSK activation and signaling and support a novel role of Shp2 in MuSK-dependent AChR clustering. (c) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available