4.7 Article

Metastatic disease of the brain: extra-axial metastases (skull, dura, leptomeningeal) and tumour spread

Journal

EUROPEAN RADIOLOGY
Volume 15, Issue 3, Pages 617-626

Publisher

SPRINGER
DOI: 10.1007/s00330-004-2617-5

Keywords

brain neoplasms; skull; magnetic resonance (MR)

Ask authors/readers for more resources

Extra-axial intracranial metastases may arise through several situations. Hematogenous spread to the meninges is the most frequent cause. Direct extension from contiguous extra-cranial neoplasms, secondary invasion of the meninges by calvarium and skull base metastases, and migration along perineural or perivascular structures are less common. Leptomeningeal invasion gives rise to tumour cell dissemination by the cerebrospinal fluid (CSF), eventually leading to neoplastic coating of brain surfaces. Contrast-enhanced magnetic resonance (MR) imaging is complementary to CSF examinations and can be invaluable, detecting up to 50% of false-negative lumbar punctures. MR findings range from diffuse linear leptomeningeal enhancement to multiple enhancing extra-axial nodules, obstructive communicating and non-communicating hydrocephalus. Both calvarial and epidural metastases infrequently transgress the dura, which acts as a barrier against tumour spread. Radionuclide bone studies are still a valuable screening test to detect bone metastases. With computed tomography (CT) and MR, bone metastases extending intracranially and primary dural metastases show the characteristic biconvex shape, usually associated with brain displacement away from the inner table. Although CT is better in detecting skull base erosion, MR is more sensitive and provides more detailed information about dural involvement. Perineural and perivascular spread from head and neck neoplasms require thin-section contrast-enhanced MR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available