4.5 Article

Practical high-resolution detection method for laser-induced breakdown spectroscopy

Journal

APPLIED OPTICS
Volume 51, Issue 7, Pages B165-B170

Publisher

OPTICAL SOC AMER
DOI: 10.1364/AO.51.00B165

Keywords

-

Categories

Funding

  1. United States Department of Energy (DOE) through the INL under DOE Idaho Operations Office [DE-AC07-05ID1417]

Ask authors/readers for more resources

A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5 m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous-source Hg lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to the observed splitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying helium atmospheric pressures. The high performance, low cost, and compact footprint make this system highly competitive with 2 m double-pass Czerny-Turner spectrometers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available