4.7 Article

Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit

Journal

NATURE NEUROSCIENCE
Volume 8, Issue 3, Pages 354-364

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1403

Keywords

-

Categories

Funding

  1. NIDCD NIH HHS [R01 DC04682, DC005679] Funding Source: Medline

Ask authors/readers for more resources

Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic gamma-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca2+ spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca2+ spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available