4.7 Article

Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers

Journal

APPLIED OCEAN RESEARCH
Volume 79, Issue -, Pages 197-214

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apor.2018.07.010

Keywords

Tip vortex; Inception; Cavitation; High skewed propeller; OpenFOAM

Funding

  1. Rolls-Royce Marine through the University Technology Centre in Computational Hydrodynamics

Ask authors/readers for more resources

Numerical and experimental investigations of two highly skewed low-noise propellers with a slight alteration in the tip geometry are conducted in both wetted and cavitating flows. The performance of the propellers is measured in open water and inclined setups at different operating conditions and high speed video recordings are used to determine tip vortex cavitation inception behaviour. The numerical simulations are conducted by employing the Implicit Large Eddy Simulation on appropriate grid resolutions for tip vortex propagation, at least 32 cells per vortex diameter according to our previous studies. In order to investigate cavitation inception characteristics of the propellers, different inception prediction methods are employed and evaluated at different advance ratios. It is shown that in addition to the well-captured difference in e.g. the amount of cavitation, the simulations are capable of correctly predicting the small but crucial differences in flow features and cavitation inception characteristics of the two propeller designs. Numerical predictions of the cavitation inception charts are also compared successfully with the measured data where three different types of cavitation patterns are investigated in details. Supported by the experimental videos, the interaction between the tip vortex and trailing vortices and their impact on the pressure field and the cavitation inception are analyzed. It is shown that the numerical simulation can provide further details about the vortical flow structures, and their contributions to cavitation, and is a powerful tool in advanced propeller design stages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available