4.7 Article

Cisplatin nephrotoxicity is mediated by deoxyribonuclease I

Journal

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
Volume 16, Issue 3, Pages 697-702

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1681/ASN.2004060494

Keywords

-

Funding

  1. NIDDK NIH HHS [P01 DK 58324-01A1] Funding Source: Medline

Ask authors/readers for more resources

Cisplatin is commonly used for chemotherapy in a wide variety of tumors; however, its use is limited by kidney toxicity. Although the exact mechanism of cisplatin-induced nephrotoxicity is not understood, several studies showed that it is associated with DNA fragmentation induced by an unknown endonuclease. It was demonstrated previously that deoxyribonuclease I (DNase 1) is a highly active renal endonuclease, and its silencing by antisense is cytoprotective against the in vitro hypoxia injury of kidney tubular epithelial cells. This study used recently developed DNase1 knockout (KO) mice to determine the role of this endonuclease in cisplatin-induced nephrotoxicity. The data showed that DNase I represents approximately 80% of the total endonuclease activity in the kidney and cultured primary renal tubular epithelial cells. In vitro, primary renal tubular epithelial cells isolated from KO animals were resistant to cisplatin (8 muM) injury. DNase I KO mice were also markedly protected against the toxic injury induced by a single injection of cisplatin (20 mg/kg), by both functional (blood urea nitrogen and serum creatinine) and histologic criteria (tubular necrosis and in situ DNA fragmentation assessed by the terminal deoxynucleotidyl transferase nick end-labeling). These data provide direct evidence that DNase I is essential for kidney injury induced by cisplatin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available